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ABSTRACT. Lakes and reservoirs have been identified as sentinels of global change as they integrate
changes in the surrounding landscape. While univariate indicator variables are relatively well assessed,
the lack of knowledge on temporal changes in species interactions under pressure has been identified as
a major gap in the bio-monitoring sciences. Multivariate autoregressive models can be used to assess
direction and strength of both direct and indirect interactions in complex communities over time. This
model framework also allows calculation of network stability properties (variance, resilience and reac-
tivity). Moreover, the interaction matrix can be further analyzed for classical network structure proper-
ties (closeness- and betweenness centrality). These measures are useful indicators of changes in ecosys-
tem stability and help identify biotic keystone groups and/or groups of species that are particularly
vulnerable to changes in the landscape.

Pe3ome. O3epa u BOJOXpaHWJIMIIA SBJISIOTCS CTpaKaMH INIOOATBHBIX M3MEHEHHH, MOCKOJBbKY OHHU
UHTETPUPYIOT B cebe M3MEHEHHs B OKpYsKarolieM JanmmadTe. B To BpeMs kak oJHOMepHbIE WHIWKA-
TOPHBIE IEPEMEHHBIE OTHOCUTEIHHO XOPOIIO U3Y4eHBl, HEOCTATOK 3HAHUH 00 M3MEHEHHSX B BUIOBOM
B3aUMOJICHCTBUH O] aHTPOIIOTEHHBIM JaBJICHHEM SIBISCTCS OOJNBIIMM MpPOOEIoM B Haykax O OHOIO-
THYECKOM MOHUTOPHHTE. MHOTOMEPHBIE aBTOPErPECCHOHHBIE MOETH MOTYT OBITh UCIIOJIL30BAHBI JIJISI
OLICHKH JTMHAMHKHU HAIIPABICHMS U CHUJIbI KAaK MPSIMBIX, TAK U KOCBEHHBIX B3aUMOJEHCTBUN B CIOKHBIX
coobmiecTBax. OTa MOAEIbHAS CTPYKTYpa TaKKe IO3BOJISIET PACCUUTHIBATH CBOWCTBA YCTOWYMBOCTH
cetu (mucriepcus, yCTOHYMBOCTh M PEAKTHBHOCTH). bojiee TOro, marpuiia B3aUMOACHCTBUS MOXKET
OBbITh JIOTIOJIHUTEIBHO MPOAHAIN3UPOBAHA Ul CBOMCTB KJIACCHYECKOW CTPYKTYpbI ceTh (LeHTpaib-
HOCTb 110 OJIU30CTH U TMOCPEIHUYECTBY). DTH MEPbI SBISIFOTCS BaKHBIMU HHAWKATOPAMH M3MEHCHHI B
CTaOMIIBHOCTH IKOCHUCTEM W TOMOTAIOT OMPEACIUTh OMOTHYECKHE KITFOUESBBIC TPYIIbI H/UIH TPYIIIbI
BHJIOB, KOTOPBIE 0COOEHHO YS3BUMBI K M3MEHEHUSIM JTaHamadra.

KEYWORDS: community stability, interaction networks, long-term research, network centrality
KiroueBble cjioBa. cTaOMILHOCTD COO6IH€CTBa, CEeTn B3aI/IMOI[€I\/'ICTBI/I$I, AOJITOCPOYHBIE HUCCIIC-
AOBaHU:, CETCBAsA ICHTPAJIbHOCTD
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INTRODUCTION

Constituting the lowest points in the landscape, lakes and reservoirs integrate changes in the catchment
and atmosphere, and can be regarded as sentinels of past and current environmental changes across re-
gions [1,2]. Physical, chemical and biological variables that are sensitive to climate and land-use changes
have been identified as sentinel indicators, ranging from e.g., ice phenology to dissolved nutrient concen-
trations to community composition [1,2]. Long-term monitoring data for such sentinel indicators are nec-
essary to extract information as to how aquatic landscapes respond to a rapidly changing world; for ex-
ample, through the assessment of decadal temperature changes in a global set of lakes [3].

While temporal changes in physical and chemical variables in lakes and reservoirs have been relatively
well explored, especially during growing seasons, less is known as to how plankton interactions, commu-
nity composition and network topography change over time and under environmental pressure [4]. This
lack of direct, observational data on species interactions and community network response to stress has
been identified as a major gap in the bio-monitoring sciences [5]. When long-term empirical data are
available, multivariate first order autoregressive, or MAR(1), models can be used to quantify the direction
and strength of species interactions and community stability properties in complex communities (re-
viewed by [6]). Moreover, the resulting interaction matrix can help characterize network structure and
identify keystone species or groups [7]. These stability and network structure properties of MAR(1) mod-
els provide useful biological indicators that can be applied for e.g. conservation management and under-
lines the general importance of the maintenance of well-designed long term monitoring programs.
MAR(1) models have predominantly been used to asses interaction networks in freshwater and marine
ecosystems, likely because the short generation time of plankton allows for the assessment of many gen-
erations’ worth of dynamics over comparably few years. The model framework has been used to analyze
biotic and abiotic drivers of community dynamics [6,8]. Several studies have explored the effect fish pre-
dation pressure on lower trophic levels and assessed the direct and indirect pathways through which
changes in predation pressure cascaded through interaction networks [9,10]. MAR(1) models have also
been used to assess the role of predation pressure on phytoplankton and ciliate population dynamics [11]
and on disease transmission [12], the effects of biotic invasions on pelagic food web structure [13], the
effects of climate change and eutrophication on the structure of plankton communities and food webs in
lakes [14-16], the effects of carbon and nutrient manipulations on pelagic networks [17], and the interac-
tive effects of environmental drivers on species interactions [18]. MAR(1) models have also allowed to
uncover interactions that were previously overlooked or underestimated in their importance to shape in-
teraction networks [7,19].

MAR(1) MODEL APPLICATION

An comprehensive guide for data preparation and analysis steps, including an introduction to the R pack-
age “MAR1” has been published by Scheef and coauthors [20]. In a nutshell, to avoid over-
parameterization of the MAR(1) models, it may be necessary to group plankton species data, whereby the
choice of grouping depends on the specific aims of a study. Biotic groups and environmental variables
can then be categorized either as variates or covariates for inclusion in the MAR(1) model [21]. Variables
that can affect their own dynamics and/or the dynamics of other groups are considered as variates. Co-
variates are variables that can affect the dynamics of variates but are unlikely to be influenced by them-
selves. These covariates are generally abiotic variables such as temperature or relatively static biotics
such as fish predation pressure. Seasonality may also need to be accounted for; for example, by adding a
time ‘dummy’ variable as covariate [9]. The choice of time intervals to which the data are aggregated can
influence the outcome of the model. Longer intervals (e.g., monthly intervals) have been shown to effi-
ciently capture time-lagged responses of biotic interactions in lake networks, but may also increase the
chance to capture signals of indirect effects [19]. Data can be log-transformed to linearize non-linear rela-
tionships between groups (as many trophic relationships are non-linear; [9]), and z-scoring allows direct
comparison of the interaction coefficients among groups [20]. The MAR(1) model needs to be initiated
by prior characterization of all potential interactions. Often, the choice is to allow only biologically plau-
sible interactions [21], with or without restrictions as to the sign of interactions (negative or positive in-
teractions). However, depending on the research question, it may also be of interest to allow the full suite
of potential interactions to explore all potential outcomes [20]; however, this will lead to a higher number
of parameters fitted to the model. Therefore, care should be taken to allow and/or restrict interactions
based on a priori knowledge of a given system.

The principle of MAR(1) models is analogous to most autoregressive models: for a given time point (t),
the biomass of each variate is predicted by multiple linear regression, using data of all other variates and
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covariates from the previous time point as predictors (for details, see [9,21]). Hence, MAR(1) models
assume linear relationships, often approximated by linearizing input data. Advances in MAR(1) models
include the development of the moving window MAR(1) (mwMAR), which quantifies the interaction
network on a moving data window and allows tracking changes in interaction strength over time [22].
Other model frameworks have been developed to allow the analysis of nonlinear relationships and chang-
es in attractor directly such as S-maps [23].

Network stability measures. Network stability indicators derived from MAR1 models are based on
measurements relative to deviations from an “equilibrium” state, i.e., the stationary distribution of a
community under environmental noise. The stability indicators (Figure 1) are expressed as (i) variance,
(i) return rate, and (iii) reactivity (for a detailed derivation, see 21). ‘Variance’ (Figure 1a) is expressed
as the ratio of stationary distribution variance to environmental variance. Unstable systems with low resil-
ience (i.e., slow return to its stationary distribution) and low resistance (i.e., high reactivity) tend to fluc-
tuate more strongly as species interactions amplify the system response to environmental variation [21].
‘Resilience’ (Figure 1b) is the return rate to ‘equilibrium’ after a perturbation (e.g., heat wave). Resilience
increases as return rate increases [21]. ‘Reactivity’ (Figure 1c) describes the potential maximal reaction
strength of a system to a perturbation. Unstable systems exhibit larger deviations from the stationary dis-
tribution after perturbations. Resistance increases as reactivity decreases [21]. These stability indicators
are directly comparable across systems, as they are not affected by the magnitude of fluctuations in sys-
tem variables [6] and thereby allow to assess the stability of ecosystems over time or space.

Figurel: Simplified balls in cup illustration of three stability measures modified from Figure 2 in Ives
et al (21) for a) variance, b) return rate, and c) reactivity with a disturbance (solid arrows) and a stabil-
ity measure response (dashed arrows). In unstable systems, variance (a) is higher as the ball spends
more time away from the center, return rate (b) is lower as the force to return to the center is lower, and
reactivity (c) is higher as the ball is moved further away from the center after a disturbance.

Network structure measures. The MAR(1) model interaction matrices can be used as a network analy-
sis input to calculate network structure properties, quantifying the influence that every group

exerts on the entire network. Betweenness and closeness centrality (Figure 2) can be used to identify key-
stone groups. However, this is based on the assumption that well-connected groups (i.e., strongly linked
to multiple other groups) in the network are major interactors, and should therefore exert a greater influ-
ence on the structure and stability of the network than other groups [24,25]. Closeness centrality (Figure
2, yellow vertices) describes how strongly a change in one vertex influences the entire network. This in-
dicator quantifies the distance of each vertex to every other vertex in the network. A vertex with a direct
connection to every other vertex in the network has a high closeness value, whereas a vertex connected to
other vertices through many intermediaries has a low closeness value [26]. Betweenness centrality (Fig-
ure 2, blue vertex) assesses vertices that connect separated modules of the network (e.g., sub-networks).
This indicator is derived from the number of shortest paths passing through a given vertex (intermediary;
[26]).

Advantages and disadvantages. MAR(1) models provide quantitative estimates of interaction strengths,
enabling the identification of direct and strong links but also of indirect “long and weak” links [24).
While most models reported in the literature only allow biologically plausible interactions, MAR(1) mod-
els can be used to uncover previously unrecognized or overlooked interactions; hence the exclusion of,
and restrictions (e.g., on the sign) of interactions should be considered with care. MAR(1)-based interac-
tion coefficients represent maintained interactions (across seasons and years) among groups. Hence, in-
teractions that are important for a short period per year, or those that are not consistent among years, tend
to be eliminated during the model searching process. Applying MAR(1) to short time series can reduce
the potential to capture the signal of environmental long-term change and render interaction coefficients
more sensitive to stochastic variability. Moreover, the interpretation of interactions using MAR(1) needs
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to take into account that seemingly direct interactions could also result from indirect effects (e.g., con-
sumers increasing nutrient cycling; [27]) or from an unobserved explanatory variable shared between
groups.

: .
é . - é

Figure 2: Simplified and idealized graphical illustration of a network structure with two sub-networks,
including a visualization of network members having high betweenness (blue vertex) and closeness
(yellow vertices) centrality values. The vertices can have different lengths and thickness representing
the interactions strength between members; e.g., MAR(1) model interaction matrices.

CONCLUSIONS

1. The application of MAR(1) or mwMAR models can help better understand how the structure of inter-
action networks and the stability of ecological communities respond to anthropogenic pressures. Ulti-
mately, the application of such model framework in biomonitoring programs can improve our ability
to predict changes in aquatic landscapes.

2. MAR(1)-derived stability and centrality measures may be used as integrated ecological indicators in
landscape research, with the aim of detecting changes in ecosystem stability (to prevent tipping points,
for instance) and identifying particularly vulnerable components of the network.
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